If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49n^2-4=0
a = 49; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·49·(-4)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*49}=\frac{-28}{98} =-2/7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*49}=\frac{28}{98} =2/7 $
| 2.5-4=7-1,5x | | -68+2x=6x+140 | | 3x4=27 | | 10x+6(x-2)=12 | | 2x^-3x-20=x^+34 | | 9=(p+1) | | 12x-3=2x+42 | | 7x-59=3x+53 | | 2(n+20)=21 | | (-5-2y)-3y=5 | | h+-5=-4 | | x^+2x=40-x | | 8(w+2)=5w-19 | | 2x+52=422 | | 2x/10=169 | | 7x-166=-5x+86 | | a-10=42 | | 2x^-12x+18=0 | | 7u-28=-4(u-4) | | 2x*9=1 | | -78+5x=48-x | | (a-4)+(-2a+7)=0 | | 10=q-6 | | 6+7x21= | | 5678x=1284392439 | | -5x^+7x=-9 | | |-6|x+12=0 | | 3-4x=18=x | | 3y-9=7+5y= | | -16=8v+4(v-7) | | 4(8-3w)=32-8(w+2 | | 20=4h |